Communion Of Dreams


Nasty nasty!

How is it, being born in 1958 and growing up in the era of MAD (and with a teenage fascination with nuclear weapons), that I never heard of this insane/brilliant project before?

Project Pluto

On January 1, 1957, the U.S. Air Force and the U.S. Atomic Energy Commission selected the Lawrence Livermore National Laboratory‘s (LLNL) predecessor, the Lawrence Radiation Laboratory, to study the feasibility of applying heat from nuclear reactors to ramjet engines. This research became known as “Project Pluto“. The work was directed by Dr. Ted Merkle, leader of the laboratory’s R-Division.

Originally carried out at Livermore, California, the work was moved to new facilities constructed for $1.2 million on eight square miles (21 km²) of Jackass Flats at the NTS, known as Site 401. The complex consisted of six miles (10 km) of roads, critical assembly building, control building, assembly and shop buildings, and utilities. Also required for the construction was 25 miles (40 km) of oil well casing which was necessary to store the million pounds (450 t) of pressurized air used to simulate ramjet flight conditions for Pluto.

The principle behind the nuclear ramjet was relatively simple: motion of the vehicle pushed air in through the front of the vehicle (ram effect), a nuclear reactor heated the air, and then the hot air expanded at high speed out through a nozzle at the back, providing thrust.

The notion of using a nuclear reactor to heat the air was fundamentally new. Unlike commercial reactors, which are surrounded by concrete, the Pluto reactor had to be small and compact enough to fly, but durable enough to survive a 7,000 mile (11,000 km) trip to a potential target. The nuclear engine could, in principle, operate for months, so a Pluto cruise missile could be left airborne for a prolonged time before being directed to carry out its attack.

That’s just the intro from the Wikipedia article. To get a better sense of just how demented this project was, check out this article from 1990: The Flying Crowbar. A couple of bits from that that gives you an idea:

Pluto’s namesake was Roman mythology’s ruler of the underworld — seemingly an apt inspiration for a locomotive-size missile that would travel at near-treetop level at three times the speed of sound, tossing out hydrogen bombs as it roared overhead. Pluto’s designers calculated that its shock wave alone might kill people on the ground. Then there was the problem of fallout. In addition to gamma and neutron radiation from the unshielded reactor, Pluto’s nuclear ramjet would spew fission fragments out in its exhaust as it flew by. (One enterprising weaponeer had a plan to turn an obvious peace-time liability into a wartime asset: he suggested flying the radioactive rocket back and forth over the Soviet Union after it had dropped its bombs.)

* * *

Because of its combination of high speed and low altitude, Pluto promised to get through to targets that manned bombers and even ballistic missiles might not be able to reach. What weaponeers call “robustness” was another important advantage. “Pluto was about as durable as a bucket of rocks,” says one who worked on the project. It was because of the missile’s low complexity and high durability that physicist Ted Merkle, the project’s director, called it “the flying crowbar.”

* * *

Meanwhile, at the Pentagon, Pluto’s sponsors were having second thoughts about the project. Since the missile would be launched from U.S. territory and had to fly low over America’s allies in order to avoid detection on its way to the Soviet Union, some military planners began to wonder if it might not be almost as much a threat to the allies. Even before it began dropping bombs on our enemies Pluto would have deafened, flattened, and irradiated our friends. (The noise level on the ground as Pluto went by overhead was expected to be about 150 decibels; by comparison, the Saturn V rocket, which sent astronauts to the moon, produced 200 decibels at full thrust.) Ruptured eardrums, of course, would have been the least of your problems if you were unlucky enough to be underneath the unshielded reactor when it went by, literally roasting chickens in the barnyard. Pluto had begun to look like something only Goofy could love.

Nasty nasty! Now I know the inspiration for The Doomsday Machine. And possibly Reaver tech.

But consider also the brilliance behind Project Pluto. It required fundamental advancements in technology on the order of what was required for the Apollo missions. Again, from the Air & Space Magazine article:

The success of Project Pluto depended upon a whole series of technological advances in metallurgy and materials science. Pneumatic motors necessary to control the reactor in flight had to operate while red-hot and in the presence of intense radioactivity. The need to maintain supersonic speed at low altitude and in all kinds of weather meant that Pluto’s reactor had to survive conditions that would melt or disintegrate the metals used in most jet and rocket engines. Engineers calculated that the aerodynamic pressures upon the missile might be five times those the hypersonic X-15 had to endure. Pluto was “pretty close to the limits in all respects,” says Ethan Platt, an engineer who worked on the project. “We were tickling the dragon’s tail all the way,” says Blake Myers, head of Livermore’s propulsion engineering division.

I can see the appeal – but I’m glad they didn’t decide to wake that particular dragon.

Jim Downey

(Via a comment at MeFi.)


Leave a Comment so far
Leave a comment



Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s



%d bloggers like this: